Colloidal solutions of luminescent porous silicon clusters with different cluster sizes
نویسندگان
چکیده
UNLABELLED Silicon nanocrystals (Si-ncs) are promising for biological studies due to their supposed low cytotoxicity, good biocompatibility and biodegradability in living organisms. However, the bioresearchers' focus on Si-ncs has lasted only for a few recent years, and detailed studies of the interaction of various types of Si-ncs with biological environment are still rare. Suitable size and solubility of the Si-ncs in water-based isotonic solutions are important towards bringing the nanocrystals inside the living cells. We have prepared colloidal solutions of luminescent porous silicon of different cluster sizes in methanol, water and phosphate-buffered saline (PBS). By combination of ultrasonic treatment with filtration, we have obtained two different silicon cluster sizes in methanol (120 and 525 nm) and three different cluster sizes (85, 210 and 1,500 nm) in PBS. Nanoclusters of heavily oxidized porous silicon are hydrophilic and well soluble in water and/or PBS. They can be further used for studies on the biocompatibility of these materials and may be potentially employed as luminescent markers in living cells in biological research. PACS 78.67.Rb; 78.67.-n; 87.85.Qr; 87.85.Rs; 81.07.-b.
منابع مشابه
Agglomeration of Luminescent Porous Silicon Nanoparticles in Colloidal Solutions
We have prepared colloidal solutions of clusters composed from porous silicon nanoparticles in methanol, water and phosphate-buffered saline (PBS). Even if the size of the nanoclusters is between 60 and 500 nm, due to their highly porous "cauliflower"-like structure, the porous silicon nanoparticles are composed of interconnected nanocrystals having around 2.5 nm in size and showing strong visi...
متن کاملSynthesis of colloidal solutions with silicon nanocrystals from porous silicon
UNLABELLED In this work, we have obtained colloidal solutions of Si nanocrystals (Si-ncs), starting from free-standing porous silicon (PSi) layers. PSi layers were synthesized using a two-electrode Teflon electrochemical cell; the etching solution contained hydrogen peroxide 30%, hydrofluoric acid 40% (HF), and methanol. The anodizing current density was varied to 250 mA cm(-2), 1 A cm(-2), and...
متن کاملFabrication of p-Type Nano-porous Silicon Prepared by Electrochemical Etching Technique in HF-Ethanol and HF-Ethanol-H2O Solutions
Nano-porous silicon were simply prepared from p-type single crystalline silicon wafer by electrochemical etching technique via exerting constant current density in two different HF-Ethanol and HF-Ethanol-H2O solutions. The mesoporous silicon layers were characterized by field emission scanning electron microscopy and scanning electron microscopy. The results demonstrate that the width of nano-p...
متن کاملBand-gap engineering by molecular mechanical strain-induced giant tuning of the luminescence in colloidal amorphous porous silicon nanostructures.
Nano-silicon is a nanostructured material in which quantum or spatial confinement is the origin of the material's luminescence. When nano-silicon is broken into colloidal crystalline nanoparticles, its luminescence can be tuned across the visible spectrum only when the sizes of the nanoparticles, which are obtained via painstaking filtration methods that are difficult to scale up because of low...
متن کاملهمبستگی تخلخل با زبری توسط طیف پراکندگی سطوح نانویی سیلیکان متخلخل
Reflection spectra of four porous silicon samples under etching times of 2, 6, 10, and 14 min with current density of 10 mA/cm2 were measured. Reflection spectra behaviors for all samples were the same, but their intensities were different and decreased by increasing the etching time. The similar behavior of reflection spectra could be attributed to the electrolyte solution concentration which ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 9 شماره
صفحات -
تاریخ انتشار 2014